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ABSTRACT
Aim: Agitation is a prevalent symptom of opioid withdrawal caused by naltrexone. Managing agitation induced by naltrexone poses challenges as 
current drug interventions are either ineffective or require intensive care. This study sought to determine the most effective diazepam dosage for 
alleviating naltrexone-induced agitation.

Materials and Methods: This research examined a dataset comprising 615 patient medical records from Loghman Hakim Hospital in Tehran, 
Iran, focusing on cases of patients experiencing naltrexone-induced agitation. The dataset included individuals who were administered low-dose 
diazepam (<10 mg; 383 cases) and high-dose diazepam  (>10 mg; 232 cases). The predictive performance of the developed models was assessed 
based on metrics such as accuracy, specificity, sensitivity, F1‑score, and ROC curve analysis.

Results: The bat algorithm demonstrated the highest performance among meta-heuristic algorithms, achieving a score of 89.5% (0.895) at iteration 
128. A comparative evaluation of five decision tree classifiers revealed that the Extra Trees Classifier surpassed others, attaining an accuracy of 
0.8649, sensitivity of 0.8649, precision of 0.8645, F1-score of 0.8649, and area under the curve (AUC) of 0.9343. Following the determination of 
feature importance and training of a multilayer perceptron neural network with weighted features, the model exhibited superior performance with 
an accuracy of 0.91, sensitivity of 0.9, precision of 0.92, F1-score of 0.91, and AUC of 0.94.

Conclusion: Features for predicting the appropriate dose of diazepam in patients with naltrexone-induced agitation included recent opioid use, 
Richmond Agitation-Sedation scale, amount of ingested naltrexone, pulse rate, systolic blood pressure, level of consciousness, serum levels of 
sodium, creatinine, and lactate dehydrogenase. Our research findings indicate that a weighted multilayer perceptron neural network shows promise 
in accurately forecasting the necessity of increased doses of diazepam for patients experiencing naltrexone-induced agitation. This is particularly 
evident when utilizing meta-heuristic techniques for feature selection and assigning importance of selected features based on the classifier with 
the highest AUC. This model could guide clinicians in tailoring diazepam doses to manage naltrexone induced agitation safely.
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INTRODUCTION

Naltrexone, an opioid antagonist, is increasingly being 
prescribed to address opioid use disorder, alcohol use disorder, 
and chronic pain1. This non-selective opioid antagonist is 
commonly used for maintenance therapy in opioid dependency 
due to its long-acting nature and high affinity to µ receptors. 
The primary long-acting metabolite of naltrexone, six-beta-
naltrexone, extends the antagonistic effects of naltrexone on 
narcotic receptors2. 

There are three potential scenarios in which a naltrexone-related 
fatality may occur: opioid overdose during oral naltrexone 
treatment as patients may consume high doses of opioids in an 
attempt to bypass the blockade; opioid overdose following the 
cessation of naltrexone treatment as individuals resume opioid 
use after treatment and lose their tolerance to opioids; and 
toxicity from naltrexone itself, particularly harmful to the liver 
in doses exceeding five times the recommended safe dose3,4.

In preclinical investigations involving opioid-naïve animal 
subjects, naltrexone demonstrated a relatively low level of 
acute toxicity5. It was observed that naltrexone led to a non-
significant reduction in respiratory rate and pupillary size, 
as well as a significant decrease in body temperature among 
five individuals with a history of addiction. Clinical trials 
conducted on opioid use disorder revealed that naltrexone 
effectively counteracted the effects of heroin for a duration 
of up to 72 hours and that it exhibited no signs of toxicity 
at doses of up to 200 mg per day. Research on naltrexone in 
opiate-naive healthy individuals suggested that the substance 
may possess certain opiate-like characteristics. Following the 
administration of 50 mg of naltrexone, participants reported 

experiencing drowsiness, dysphoria, sexual thoughts, penile 
erection, and an elevation in luteinizing hormone levels6,7. 

The literature suggests that the mortality risk associated 
with naltrexone is significantly increased in cases of relapse 
following opioid abstinence, primarily due to opioid toxicity. 
Patients undergoing naltrexone treatment experience a 
reduced tolerance to agonist opioids compared to their pre-
treatment levels, making them susceptible to potentially 
fatal overdoses at the end of a dosing interval, after missing 
a dose, or upon discontinuation of treatment. Attempts 
to circumvent the opioid blockade can also result in fatal 
overdoses8. Additionally, the use of naltrexone in opioid-
dependent individuals can trigger acute and severe withdrawal 
symptoms, characterized by heightened agitation compared to 
withdrawal from abstinence9. 

Diazepam has been commonly used for symptomatic relief, 
though case reports suggest variable effectiveness, often 
requiring high doses for sedation. One study reported initial 
limited relief with 10 mg intravenous diazepam, necessitating 
escalation to 60 mg for effective symptom control10. A 
comparative trial showed that midazolam had a faster onset of 
action (67 minutes) compared to diazepam (81 minutes), though 
neither was deemed ideal for rapid agitation management11. 
Furthermore, a review of primary studies reported that the 
doses of diazepam administered to treat agitation induced by 
naltrexone ranged from 5 mg to over 40 mg, depending the 
different naltrexone formulation and severity of symptoms12.

There is limited empirical evidence supporting treatment 
recommendations, and consensus among experts is lacking. 
Traditional symptomatic therapies like antiemetics, clonidine, 

ÖZ
Amaç: Ajitasyon, naltreksonun neden olduğu opioid yoksunluğunun yaygın bir semptomudur. Naltreksonun neden olduğu ajitasyonu yönetmek, 
mevcut ilaç müdahalelerinin ya etkisiz olması ya da yoğun bakım gerektirmesi nedeniyle zorluklar ortaya çıkarmaktadır. Bu çalışma, naltreksonun 
neden olduğu ajitasyonu hafifletmek için en etkili diazepam dozajını belirlemeyi amaçlamaktadır.

Gereç ve Yöntem: Bu araştırma, İran’ın Tahran kentindeki Loghman Hakim Hastanesi’nden alınan 615 hasta tıbbi kayıtlarından oluşan bir veri 
setini incelemiş ve naltreksonun neden olduğu ajitasyon olgularına odaklanmıştır. Veri seti, düşük doz diazepam (<10 mg; 383 olgu) ve yüksek doz 
diazepam (>10 mg; 232 olgu) verilen bireyleri içermektedir. Geliştirilen modellerin tahmin performansı, doğruluk, özgüllük, duyarlılık, F1 skoru ve 
ROC eğrisi analizi gibi metriklere göre değerlendirildi.

Bulgular: Yarasa algoritması, meta-sezgisel algoritmalar arasında en yüksek performansı göstererek, 128. yinelemede %89,5 (0,895) puan aldı. 
Beş karar ağacı sınıflandırıcısının karşılaştırmalı değerlendirmesi, Ekstra Ağaç Sınıflandırıcı diğerlerini geride bırakarak 0,8649 doğruluk, 0,8649 
duyarlılık, 0,8645 kesinlik, 0,8649 F1 skoru ve 0,9343 eğri altındaki alan (AUC) elde ettiğini ortaya koymuştur. Özelliklerin öneminin belirlenmesi ve 
ağırlıklı özelliklere sahip çok katmanlı bir algılayıcı sinir ağının eğitilmesinin ardından, model 0,91 doğruluk, 0,9 duyarlılık, 0,92 kesinlik, 0,91 F1 skoru 
ve 0,94 AUC ile üstün performans sergilemiştir. Naltrekson kaynaklı ajitasyon hastalarında uygun diazepam dozunu tahmin etmek için kullanılan 
özellikler arasında son zamanlarda opioid kullanımı, Richmond Ajitasyon-Sedasyon ölçeği, alınan naltrekson miktarı, nabız hızı, sistolik kan basıncı, 
bilinç düzeyi, serum sodyum, kreatinin ve laktat dehidrojenaz düzeyleri yer almaktadır.

Sonuç: Araştırma bulgularımız, ağırlıklı çok katmanlı algılayıcı sinir ağının, naltrekson kaynaklı ajitasyon yaşayan hastalar için diazepam dozunun 
artırılması gerekliliğini doğru bir şekilde tahmin etmede umut vaat ettiğini göstermektedir. Bu, özellikle özellik seçimi için meta-sezgisel teknikler 
kullanıldığında ve en yüksek AUC’ye sahip sınıflandırıcıya göre seçilen özelliklerin önemine göre atandığında belirgindir. Bu model, klinisyenlere 
naltrekson kaynaklı ajitasyonu güvenli bir şekilde yönetmek için diazepam dozlarını ayarlamada rehberlik edebilir.

Anahtar Kelimeler: Naltrekson, ajitasyon, diazepam, meta-sezgisel algoritma, çok katmanlı algılayıcı, makine öğrenimi
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benzodiazepines, and titrated doses of an opioid agonist are 
generally effective in managing opioid withdrawal symptoms12. 
Various medications have been utilized to address agitation 
induced by naltrexone in addicted patients, but none have 
demonstrated satisfactory efficacy in controlling agitation 
upon admission. Benzodiazepines are considered safe sedatives 
with documented efficacy in similar scenarios, although their 
use for managing agitation resulting from inappropriate 
naltrexone use is uncertain. Prompt management of agitation 
is crucial during severe episodes, as patients may pose a risk 
to themselves, companions, or medical staff13. Therefore, 
this study utilized a hybrid artificial neural network model 
to determine the optimal intravenous diazepam dosage for 
maximizing the efficacy of benzodiazepines in controlling 
naltrexone-induced agitation. 

MATERIALS AND METHODS

Study Design and Setting 

This study is a retrospective cross-sectional analysis of 
medical records of patients experiencing naltrexone-induced 
withdrawal symptoms at Loghman Hakim Hospital from April 
2002 to March 2016. Trained clinical toxicologists documented 
patients’ medical history, treatment trends, and vital signs. 
Figure 1 summarize the methodology of study. The study 
received approval from the Ethics Committee of Shahid 
Beheshti University of Medical Sciences (decision no: IR.SBMU.
RETECH.REC.1402.626, date: 01.07.2024). Patient data were 
de-identified using file numbers to protect confidentiality.

Data Set Description and Participants 

The dataset consists of 615 patient records from Loghman 
Hakim Hospital, focusing on individuals experiencing 

naltrexone-induced withdrawal symptoms. This hospital 
serves as a primary referral center for individuals affected by 
poisoning cases. Among the dataset entries, 232 cases were 
treated with high-dose diazepam (>10 mg) while 383 cases 
received low-dose diazepam (≤10 mg). The study included 
all patients presenting with naltrexone-induced withdrawal 
symptoms, whether due to intentional or accidental 
poisoning, at Loghman Hakim Hospital. The exclusion criteria 
consisted of cases with multiple drug toxicity, severe chronic 
comorbidities (e.g., cardiovascular diseases, neurological 
disorders, psychiatric conditions, or seizure disorders), as 
well as patients with incomplete medical records related to 
demographic information, vital signs, or paraclinical data at 
admission. 

Benzodiazepines are considered safe sedatives with documented 
efficacy in similar scenarios, although their use for managing 
agitation resulting from inappropriate naltrexone use is 
uncertain11.

Data Gathering

A comprehensive examination of patient medical records was 
conducted by a team of six researchers. Data were extracted 
from the electronic databases of Loghman Hakim Hospital 
(Sabara and Shafa databases) using a pre-made checklist. The 
collected information included demographic details such as 
age, gender, last opioid intake, and the purpose of naltrexone 
usage. Additionally, vital signs and withdrawal symptoms 
upon admission were documented. Furthermore, details 
on the administration of diazepam, blood glucose levels, 
electrocardiograms (ECGs), venous blood gases (VBG), blood 
electrolytes, liver and kidney function tests, and the Richmond 
Agitation-Sedation scale (RASS) were also recorded.

Figure 1. The flowchart visualizing the methodology of study

ML: Machine learning
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Pre‑processing of the Data 

Various preprocessing techniques were used in this study 
to optimize classification algorithms after data collection. 
Methods included removing variables with over 70% missing 
data, identifying and eliminating noisy data and outliers, 
and addressing missing data in other variables with Mean 
Imputation and Stochastic Regression Imputation. To mitigate 
bias from mean imputation, we restricted its use to variables 
with minimal missingness (<5%). Data points falling outside 
the normal range were excluded in consultation with clinical 
committees. The dataset was split into train and test sets, then 
further divided into Class A for patients receiving diazepam 
doses of 10 mg or less, and Class B for doses over 10 mg.

Feature Selection

The process of feature selection, which involves eliminating 
redundant variables from the initial dataset while retaining 
essential information, is crucial in mitigating the risk of 
overfitting. In the initial phase of the research, a total of 42 
features were identified, encompassing a diverse array of clinical 
and paraclinical symptoms, reflecting the high complexity and 
dimensionality of the characteristics under investigation. A 
crucial aspect of the study involved the selection of an optimal 
subset of features. To achieve this, the formulation of a loss 
function was imperative. The loss function was established 
through the utilization of the following equation in the 
research process:

Loss Function = 

To assess accuracy in the context of medical sciences for 
predicting treatment methods, where accuracy is crucial, the 
decision tree family of machine learning (ML) algorithms was 
employed. This family of algorithms is adept at addressing 
complex cases and offers valuable insights into feature 
importance for decision-making processes. Moreover, these 
algorithms demonstrate resilience when faced with imbalanced 
datasets. The evaluation of ML models from the decision tree 
family was conducted based on metrics such as accuracy, 
precision, sensitivity, area under the curve (AUC), and F1-score.

The decision tree algorithms utilize conditional statements to 
establish predictive criteria, with each algorithm possessing 
distinct architectural characteristics beyond this fundamental 
condition. The dataset was trained using a ten-fold cross-
validation technique, involving the partitioning of the data 
into ten subsets and iteratively applying the holdout method. 
Meta-parameters were fine-tuned according to the training 
dataset through the utilization of the cross-validation 
methodology. The loss function was established based on the 
predictive accuracy of the model exhibiting the highest AUC 
metric. 

The process of feature selection was conducted through the 
utilization of metaheuristic algorithms. The bat algorithm 
is a metaheuristic algorithm that operates on a population-
based approach and is designed for addressing continuous 
optimization problems. This algorithm has demonstrated 
efficacy in optimizing solutions across various domains such 
as cloud computing, feature selection, image processing, and 
control engineering challenges14.

When employing a search method based on 42 features, 
the computational complexity increases significantly, as the 
number of potential states grows exponentially at a rate of 42 
squared. Furthermore, this search approach lacks convergence 
due to its random nature, in contrast to meta-heuristic 
algorithms which exhibit convergence and reduce the number 
of potential states as the search space is optimized.

The meta-heuristic algorithm has a time complexity of O 
(N2), which is the same as a quadratic polynomial. In order to 
efficiently address the NP problem, we suggest using binary 
feature algorithms that have minimal time complexity and cost 
for organizing and distributing tasks in our feature selection 
issue. We outline an objective function and provide a table 
displaying the average duration for each iteration.

In this study, seven meta-heuristic algorithms were employed 
to select features based on the loss function including Binary 
Genetic Algorithm, Binary Particle Swarm Optimization, Binary 
Cuckoo Search, Binary Firefly Algorithm, Binary Bat Algorithm, 
Binary Gravitational Search Algorithm, and Binary Dragon Fly 
Algorithm. The meta-heuristic algorithm was chosen for its 
proven efficiency in medical feature selection15,16. The algorithm 
aims to minimize the loss function and systematically searches 
for a binary list. The binary list indicates feature selection, with 
a selection indicator represented by the number one and non-
selection indicated by zero. Algorithm with the best score and 
the least loss function was utilized for feature selection17. 

Statistical Analysis

The Kolmogorov-Smirnov and the Shapiro-Wilk tests results 
revealed that all continuous variables were distributed non-
normally. Consequently, the continuous variables were 
represented by their median values and interquartile ranges 
and were analyzed using the Mann-Whitney U test. Categorical 
variables were reported as absolute frequencies and respective 
percentage and were analyzed using the chi-square test. The 
performance of classification models was assessed through 
the receiver-operating curve. Additionally, other performance 
metrics including the accuracy, sensitivity, and specificity were 
computed. In this research, the Python Programming Language 
(version 13.1) and associated libraries were used. Libraries such 
as Matplotlib, NumPy, Seaborn, and Pandas were used for data 
analysis and visualization purposes. The scikit-learn library 
was employed to develop algorithms and evaluate ML models 
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performance. For descriptive analyses, the SPSS version 26 was 
utilized.

Model Evaluation (Stage 2)

After feature selection, five classifiers from the ML realms were 
employed to construct a predictive model for the appropriate 
diazepam dosage in patients experiencing naltrexone induced 
withdrawal. Among the ML models employed were the Light 
Gradient Boosting Machine, Random Forest Classifier, Gradient 
Boosting Classifier, Extreme Gradient Boosting and Extra Trees 
Classifier. The aim of utilizing this array of classifiers was 
to improve prediction accuracy and gain insights into the 
intricate factors influencing the optimal diazepam dosage for 
managing agitation induced by naltrexone. The dataset was 
divided randomly into training (70%) and testing (30%) sets 
to develop and validate the ML algorithms. A ten-fold cross-
validation technique was applied to train the dataset with 20 
selected features, involving the division of the dataset into 
ten sections and conducting the holdout method iteratively. 
Hyperparameters were adjusted based on the training dataset 
using the cross-validation approach. Subsequently, the 
classification algorithms were tested on the testing dataset to 
evaluate their performance. The performance of the classifiers 
in predicting appropriate dosage of diazepam in patients with 
naltrexone induced agitation was assessed using underfitting 
and overfitting evaluation methods, along with five standard 
efficiency testing metrics such as accuracy, specificity, 
sensitivity, precision, and F1-score according to the following 
equations:

1) 

2) 

3) 

4) 

5) 

The performance of each classifier was compared against other 
ML algorithms using these metrics. The best-performing model 
was selected based on the efficiency results to proceed with 
further data analysis and to determine the significance of 
features for neural network weighting through model tuning.

Feature Weight Calculation Using Decision Trees

In order to ascertain the importance coefficient of 20 selected 
features, the researchers enlisted the assistance of the most 
effective classifier based on the AUC metric in the realm of 
ML. Leveraging the unique characteristic of decision trees 
in calculating the Gini index, these trees were employed to 
evaluate feature importance. The efficacy of decision tree 

algorithms within this family is underscored by the root node, 
which encompasses all initial data pertinent to the issue at 
hand, in this instance, the 20 selected features. Subsequently, 
the attribute selection measure was utilized to identify the 
optimal features based on their level of importance. The 
feature that yields the most substantial decrease in impurity 
within a node is deemed the most valuable. Both Gini and 
Entropy methodologies can be applied to assess the impurity 
associated with each attribute. The research utilized the Gini 
index technique to assess the feature importance. This method 
involves favoring and choosing features with a lower Gini index 
over those with a higher Gini index in the decision tree. The 
Gini index is determined through the following mathematical 
formula:

The Gini impurity at a given node “t” is denoted as “G (t)”, where 
“pi” represents the proportion of observations belonging to 
Class C at node “t”. The Gini index is determined by subtracting 
the sum of the squared probabilities of each class from one. The 
information pertaining to the 20 selected features underwent 
initial processing through MinMax Scaler. This technique 
involves scaling the data, ensuring that the minimum feature 
is set to zero and the maximum feature is set to one. Notably, 
this approach maintains the original distribution shape of the 
data.

Next, the features intended for incorporation into the neural 
network were assigned weights based on the subsequent 
formula:

In the aforementioned relationship, “w” denotes the weight 
assigned to individual features derived from the decision tree. 
The parameter α is indicative of the hyperparameter utilized in 
this context to ascertain the impact of feature weights prior 
to their integration into the neural network. For the purposes 
of this research, α was set at a value of one. Finally weighted 
features were integrated in a multilayer perceptron (MLP) 
neural network. In this study, we used three layers including 
the input and output layers and the hidden layer. The weighted 
neural network’s performance was evaluated against the ML 
models exhibiting the most accurate predictive capabilities17.

RESULTS

Patient’s Characteristics

The medical documentation of 907 individuals presenting with 
naltrexone toxicity was examined, with 292 patients being 
excluded based on predetermined exclusion criteria. The patient 
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selection methodology is depicted in Figure 2 for clarity and 
transparency. The remaining cohort of 615 patients exhibited 
symptoms of naltrexone-induced agitation, with a mean age 
of 37.27 years and a standard deviation of 11.52 years, falling 
within the age range of 14 to 70 years. The study comprised 
589 male participants with an average age of 37.27±11.50 and 
26 female participants with an average age of 37.23±12.27. 
Statistical analysis revealed no significant difference in 
average age between the sexes (p=0.149). Among the 615 
cases of poisoning examined, agitation in 232 cases (37.7%) 
was managed using a high dose of diazepam (exceeding 10 
mg), while agitation in 383 cases (62.3%) was controlled with 
a low dose of diazepam (equal to 10 mg). The descriptive and 
analytical statistical outcomes pertaining to these two dosage 
categories are presented in Table 1. 

Feature Selection

The initial step in feature selection involved the determination 
of a loss function to identify the most suitable features. This 
function was established by evaluating the performance 
of decision tree models using 42 initial features within the 
initial phase of model evaluation. Performance metrics of ML 
algorithms during this stage are detailed in Table 2.

The findings indicated that the Extra Trees Classifier model, 
exhibiting the highest AUC, outperformed other models. 
Consequently, the loss function was defined based on the 
accuracy of this particular model. Meta-heuristic algorithms 
were employed for feature selection based on the Loss 
function. These algorithms are designed to minimize the loss 
function and systematically search for a binary list with the 
lowest value. The results of using a list of the most important 
meta-heuristic algorithms are shown in supplementary 
information (Table 1). Furthermore, the evaluation of four 
meta-heuristic algorithms based on their performance 
revealed that the bat algorithm outperformed the others by 
achieving the highest score of 89.5% (0.895) in iteration 128 
(Figure 3). The population data is refreshed, and the primary 
iteration concludes, repeating until the specified termination 
criterion is satisfied. In this particular scenario, the stopping 
criterion was defined as reaching a total of 200 iterations. 
The bat algorithm identified a total of 20 features for selection. 
The feature selection process is illustrated in supplementary 
information (Figure 1).

Figure 2. The patient selection flowchart 
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Table 1. Patient’s characteristics
Class dose diazepamScaleVariables

p-valueTotal 
(615)

Patients who received 
>10 mg diazepam (383)

Patients who received 
>10 mg diazepam (232)

0.455589365 (62%)224 (38%)Male
NominalGender (n, %)

2618 (69%)8 (31%)Female

0.14937 (16)34 (18)------IntervalAge (median, IQR)

0.019

1815 (84%)3 (16%)Opioid addiction 
treatment

Nominal Purpose of naltrexone use 10957 (52%)52 (48%)Suicide

2116 (77%)5 (23%)Accident

476295 (62%)172 (36%)Unknown

0.14----36.9 (0.1)37 (0.1)----IntervalTemperature

0.742----120 (15)120 (20)----IntervalSystolic blood pressure

0.902----75 (10)75 (10)----IntervalDiastolic blood pressure

0.582----97 (0)97 (1)----IntervalSpa02

0.07
11580 (70%)35 (30%)Yes

NominalVomiting
500303 (61%)197 (39%)No

0.46
10770 (66%)37 (34%)Yes

NominalNausea
508313 (62%)195 (38%)No

0.94
5132 (63%)19 (37%)Yes

NominalDiarrhea
564351 (62%)213 (38%)No

0.95
138 (625)5 (38%)Yes

NominalYawning
602375 (54%)277 (46%)No

0.17
119 (82%)2 (18%)Yes

NominalLacrimation
604374 (62%)230 (38%)No

0.47
118 (73%)3 (27%)Yes

NominalRespitatory
604375 (62%)229 (38%)No

0.95---80 (8) 80 (15)---IntervalECG_Rate

0.324

499317 (64%)182 (36%)Normal sinus

Nominal

Rhythm

5229 (56%)23 (44%)Not-sinus-AF

5531 (56%)24 (44%)AF

43 (75%)1 (25%)Sinus tachycardia

53 (60%)2 (40%)Sinus bradycardia

0.445

561348 (62%)213 (38%)Normal

Nominal
Axis deviation

2816 (57%)12 (43%)Right axis deviation

2619 (73%)7 (27%)Left axis deviation

0.82
64 (67%)2 (33%)Yes

NominalST elevation
609379 (62%)230 (38%)No

0.377
1813 (72%)5 (28%)Yes

NominalT invert
597370 (54%)227 (46%)No

0.266
94 (45%)5 (55%)Yes

NominalT flat
606379 (63%)227 (37%)No

0.34----7.41 (0)7.41 (0)----IntervalVBG_PH

0.36----40 (0)40 (0)----IntervalVBG_Pco2

0.05----0.7 (0)0.7 (0)----IntervalVBG_BE

0.54----80 (12)80 (13)----Intervalp

0.722----4.1 (0.5)4.1 (0.4)----IntervalK
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Table 1. Continued
Class dose diazepamScaleVariables

p-valueTotal 
(615)

Patients who received 
<10 mg diazepam (383)

Patients who received 
>10 mg diazepam (232)

0.44----108 (23)107 (24)----IntervalBS

0.629----38.4 (0)38.4 (0)----IntervalVBG_Po2

0.145----24.5 (0)24.5 (0)----IntervalVBG_Hco3

0.756----13.9 (1.3)13.9 (1.45)----IntervalHgb

0.759----141 (4)141 (4)----IntervalNa

0.691----1.04 (0.2)1.04 (0.2)----IntervalCr

0.004----38 (0)38 (0)----IntervalAIT

0.311----30 (10)30 (13)----IntervalBUN

0.075----34 (0)34 (0)----IntervalAST

0.654----214 (0)214 (0)----IntervalALK

0.064----666 (0)666 (0)----IntervalCK

0.192----662 (0)662 (0)----IntervalLDH

0.041513 (87%)2 (13%)Yes
NominalSeizure

600370 (62%)230 (38%)No

0.00016113 (9%)148 (91%)Yes
Nominal

Recent opioid use,
<1 week, (n, %) 454370 (82%)84 (18%)No

0.0003 (3)2 (4)----IntervalTime elapsed before 
hospital admission

0.00050 (0)50 (50)----IntervalNaltrexone intake quantity 
(mg)

0.86

480297 (62%)183 (38%)Conscious

Ordinal
Level of consciousness

10969 (73%)40 (37%)Grade 1

1912 (73%)7 (37%)Grade 2

53 (60%)2 (40%)Grade 3

22 (100%)0Grade 4

0.00---0 (2)2 (4)---OrdinalRASS

IQR: Interquartile range, ECG: Electrocardiogram, ST: Segment, AF: Atrial fibrillation, K: Potassium, BS: Blood sugar, Hgb: Hemoglobin, Na: Sodium, Cr: Creatinine, AIT: 
Autoimmune thyroiditis, BUN: Blood urea nitrogen, AST: Aspartate aminotransferase, ALK: Alkaline phosphatase, CK: Creatine kinase, LDH: Lactate dehydrogenase, RASS: 
Richmond agitation-sedation scale

Table 2. Ten-fold cross-validation for classifiers performance on selected predictors in classification decision tree family (42 
features) in train datasets
Model Accuracy AUC Sensitivity Precision F1

Light gradient boosting machine
Train 0.9186 0.9290 0.9186 0.9225 0.9169

Test 0.8919 0.9210 0.8919 0.8919 0.8919

Random Forest Classifier
Train 0.9047 0.9241 0.9047 0.9079 0.9031

Test 0.8757 0.9201 0.8757 0.8761 0.8758

Gradient Boosting Classifier
Train 0.9023 0.9241 0.9023 0.9054 0.9006

Test 0.8865 0.9098 0.8865 0.8862 0.8863

Extreme Gradient Boosting
Train 0.9000 0.9252 0.9000 0.9030 0.8983

Test 0.8919 0.9241 0.8919 0.8919 0.8919

Extra Trees Classifier
Train 0.8977 0.9226 0.8977 0.9017 0.8955

Test 0.8703 0.9306* 0.8703 0.8695 0.8695

AUC: Area under the curve, *: Maximum value
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Model Evaluation (Stage 2)

The outcomes of ten-fold cross-validation for the performance 
of classifiers on a set of 20 features in the classification 
decision tree family are presented in Table 3. The analysis 
indicates that Extreme Gradient Boosting (XGBoost) achieved 
the highest levels of accuracy (0.8811), sensitivity (0.8811), 
precision (0.8819), and F1-score (0.8814) on the test dataset. 
Furthermore, the Extra Trees Classifier exhibited the highest 
AUC compared to other decision tree classifiers (AUC: 0.9343). 
Based on the findings in Table 3, the Extra Trees Classifier 
model emerged as the most suitable choice for further 
investigation into feature importance for weighting neural 
network performance through model tuning. The observed 
discrepancy between values of model’s performance metrics 
was due to feature selection. Models trained on a reduced set 
of 20 selected features demonstrated superior performance 
compared to models using the original 42 features, highlighting 
the impact of feature selection on predictive accuracy. 

Feature Weight Calculation Using Decision Trees 

To determine the importance coefficient of 20 chosen features, 
researchers utilized the assistance of the Extra Trees Classifier, 
selected based on the optimal AUC metric obtained during 
model evaluation. The top 20 features and their respective 
importance values are detailed in Figure 4. The figure illustrates 
the ranking of feature importance in a descending order on 
the y-axis, with the x-axis representing the corresponding 
importance values. The researchers identified and ranked the 
most significant features in the following sequence: recent 
opioid use, RASS score, naltrexone intake quantity, heart rate, 
systolic blood pressure, time elapsed before hospital admission, 
sodium level, creatinine level, level of consciousness, VBG-HCO3, 
purpose of naltrexone use, nausea, lactate dehydrogenase, 
AXIS, SpaO2, seizure occurrence, gender, T-flat wave, respiratory 
rate, and lacrimation (Figure 4).

Neural Network Results

The outcomes of incorporating weighted features into a 
MLP neural network were detailed in Table 4. The MLP model 
demonstrated notable performance metrics, including an AUC 
of 0.94, accuracy of 0.91, precision of 0.92, sensitivity of 0.9, 
and an F1-score of 0.91. Additionally, Figures 5 to 7 visually 
depict the enhanced effectiveness of the weighted MLP neural 
network when compared with ML techniques like Extreme 
Gradient Boosting and Extra Trees Classifier. The values 
reported in the Tables 3 and 4 report the average values of 
evaluation metrics calculated for the two study groups. The 
minor discrepancies between the values shown in Figures 6 
and 7 and those in Tables 3 and 4 is because the figures report 
numbers rounded to two decimal places.

Figure 3. Performance of four meta-heuristic algorithms

Table 3. Ten-fold cross-validation for classifiers performance on selected predictors in classification decision tree family (20 
features) in train datasets 
Model Accuracy AUC Sensitivity Precision F1

Gradient Boosting Classifier
Train 0.9256 - 0.9256 0.9303 0.9237

Test 0.8703 0.9227 0.8703 0.8697 0.8699

Extreme Gradient Boosting
Train 0.9209 - 0.9209 0.9254 0.9201

Test 0.8811* 0.9175 0.8811* 0.8819* 0.8814*

Light Gradient Boosting Machine
Train 0.9140 - 0.9140 0.9148 0.9129

Test 0.8703 0.9252 0.8703 0.8703 0.8703

Random Forest Classifier
Train 0.9116 - 0.9116 0.9128 0.9107

Test 0.8703 0.9302 0.8703 0.8697 0.8699

Extra Trees Classifier
Train 0.9070 - 0.9070 0.9093 0.9056

Test 0.8649 0.9343* 0.8649 0.8645 0.8649

*: Maximum value, AUC: Area under the curve



Nam Kem Med J 2025;13(3):209-221RAHIMI et al. Naltrexone Induced Agitation

218

DISCUSSION 

This research employed metaheuristic-based algorithms for 
the purpose of feature selection. Metaheuristic algorithms 
are a type of optimization methods used to tackle complex 
optimization problems that traditional approaches may have 
difficulty solving effectively. These algorithms are known for 
their adaptability in various optimization fields, including 
engineering, logistics, finance, and artificial intelligence18. 
Metaheuristic algorithms excel at identifying the most 
suitable subset of features in a dataset while maintaining 
model accuracy. Considering their effectiveness, this research 
focuses on leveraging metaheuristic algorithms to address 
feature selection complexities19. These algorithms efficiently 
solve complex optimization problems. Their significance is 
particularly notable in complex medical scenarios, such as 
diagnosis and treatment, especially in domains like drug 
dosage determination where predictive variables may be 
scarce. The utilization of metaheuristic algorithms to address 
these optimization challenges has emerged as a promising 
approach for handling NP-hard problems. 

Modern challenges require quick solutions, making classical 
approaches inadequate. This has led to the rise of meta-
heuristic algorithms, which explore spaces efficiently using 
a single fitness function, often with swarm intelligence. 
These algorithms can be population-based, like Genetic 
Algorithm, or path-based, like bat algorithm, which excels in 

complex biomedical scenarios. In this study, the bat algorithm 
outperformed other methods in feature selection, showing 
promise for solving challenging optimization problems in 
various fields20,21. 

Figure 4. Feature importance

ECG: Electrocardiogram, Na: Sodium, Cr: Creatinine, LDH: Lactate 
dehydrogenase, RASS: Richmond Agitation-sedation scale, 
VBG: Venous blood gases 

Figure 5. Confusion matrix comparison between the optimal machine learning classifier model, XGBoost, and the weighted MLP 
neural network model

MLP: Multilayer perceptron

Table 4. The outcomes of incorporating weighted features into a multilayer perceptron neural network
Model Dataset Accuracy AUC Sensitivity Precision F1

MLP
Train 0.93 ----- 0.92 0.94 0.93

Test 0.91 0.94 0.90 0.92 0.91
AUC: Area under the curve, MLP: Multilayer perceptron
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Figure 6. Comparison of the precision, sensitivity, and F1-score metrics in the optimal machine learning model (XGBoost) and 
weighted MLP neural network model

MLP: Multilayer perceptron

Figure 7. Comparison of the ROC curve between two machine learning models (XGBoost and Extra Trees classifier) and weighted 
MLP neural network model

MLP: Multilayer perceptron, AUC: Area under the curve
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Among developed ML models,  the Extra Trees Classifier yield 
the strongest performance based on its AUC score. The Extra 
Trees algorithm excels at selecting informative features via 
gradient-based techniques, enhancing predictive modeling 
outcomes. For example, Mathpal et al.22 reported how Extra 
Trees played a central role in identifying compounds targeting 
mutant PBP4 in Staphylococcus aureus, achieving an 81% 
predictive accuracy. This highlights the model’s effectiveness 
in not only making predictions but also elucidating which 
features contribute most significantly, thus aiding in clinical 
decision-making and research explorations. Numerous studies 
demonstrate that predictions using Extra Trees Classifiers have 
been successfully applied across various critical healthcare 
settings, from early detection of diabetes23 to the prediction 
of abdominal aortic aneurysms24. The ability to predict 
outcomes reliably emphasizes the model’s critical role in 
improving patient management and therapeutic strategies. A 
study compared decision tree classifiers with a weighted MLP 
neural network, finding that the MLP network showed superior 
performance in AUC and other evaluation criteria. Despite 
typically requiring large training samples, MLP models can 
be accurate with limited data by restricting input parameters 
and utilizing feature weight calculation from the highest AUC 
classifier. The ROC curve, unaffected by imbalanced data, 
makes AUC a preferred metric for evaluating ML models25,26.

Recent opioid use was found to be the primary factor 
influencing the necessary dosage of diazepam to manage 
agitation triggered by naltrexone. The absorption of naltrexone 
through oral intake occurs swiftly, reaching peak levels in the 
bloodstream within 3 hours. It is advised that individuals be 
free of opioids for 7 to 10 days before receiving naltrexone. 
Consequently, patients who have used opioids within a 
week prior to naltrexone administration are at a higher 
risk of encountering acute opioid receptor blockade and 
intense opioid withdrawal symptoms, necessitating increased 
diazepam dosages9. A higher RASS score was found to be a 
strong indicator of a high dosage of diazepam, consistent with 
prior research that has demonstrated a relationship between 
RASS score and the amount of sedative and analgesic drugs 
administered27,28. A higher RASS score may signal a need 
for >10 mg diazepam to achieve sedation. However, the 
exact RASS cut-off value needs to be determined in future 
studies. Increased consumption of naltrexone was linked to 
an increased need for diazepam to alleviate agitation, likely 
attributable to its competitive antagonistic properties and the 
dose-dependent manner in which it blocks opioid receptors29. 
Although, in the study conducted by Sabzghabaee et al.11 it 
has been reported that diazepam cannot effectively reduce 
agitation until 120 minutes post-administration, and its mean 
onset of action is lower than midazolam. In a systematic review 
by Kunzler et al.12, reported diazepam dosing regimens varied 

by treatment scenario: 5-10 mg for oral naltrexone, 10 mg for 
extended-release injectable naltrexone (Vivitrol®), up to 30 mg 
for naltrexone implants or nalmefene (18 mg), and 10-40 mg 
for high-dose naltrexone (50 mg).

Several factors such as elevated pulse rate, increased systolic 
blood pressure, heightened level of consciousness, presence 
of nausea, reduced lacrimation, and decreased need for 
mechanical intubation are more prevalent in severely agitated 
patients, potentially necessitating higher doses of diazepam 
for resolution. Gender was identified as a feature; further 
research is needed to explore the potential relationship 
between gender, agitation intensity, and diazepam dosage 
requirements. It is important to note that suicide is a complex 
issue with multiple contributing factors. Additional predictors 
warranting further investigation for their potential association 
with increased diazepam dosages in these patients include ECG 
abnormalities (such as T-wave flattening and axis deviation), 
levels of sodium and creatinine, arterial oxygen saturation, and 
bicarbonate levels in VBG analysis. 

Study Limitations

There are several limitations that need to be acknowledged. 
Primarily, the study was constrained by the challenges 
associated with data collection from multiple medical facilities 
in Iran, resulting in the utilization of data from a single 
hospital. As regional differences in opioid use patterns may 
affect generalizability, future investigations should consider 
expanding the sample size or incorporating data from 
multi-center datasets. Furthermore, the study was restricted 
to a limited selection of five ML models. To gain a more 
comprehensive understanding, it is advisable for subsequent 
research to explore a broader array of models. Moreover, the 
method to handle the missing data may introduce bias. For 
instance, mean imputation, may underestimate variability 
for variables with non-random missingness and stochastic 
regression imputation relies on correctly specified regression 
models. Future work could explore advanced methods (e.g., 
Bayesian imputation) for complex missingness patterns. Lastly, 
the retrospective nature of the dataset may introduce biases 
and uncertainties stemming from missing data. 

CONCLUSION

Our research findings indicate that the utilization of a 
weighted MLP neural network can be an effective tool in 
developing a prediction model for the necessity of higher 
doses of diazepam for patients experiencing naltrexone-
induced agitation. Particularly noteworthy is the enhanced 
predictive capability achieved when employing meta-heuristic 
techniques for feature selection and subsequently weighting 
these selected features using a classifier with the highest 
AUC value. In conclusion, our study emphasizes the value 
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of employing a weighted MLP neural network to improve 
predictive accuracy and facilitate the tailored management of 
patients experiencing naltrexone-induced agitation and could 
reduce trial-and-error dosing, improving patient safety and 
staff efficiency.
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